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Abstract 


This paper describes our latest results which we achieved by solving a not typical scheduling application using CLP (Constraint Logic Programming) approach. The problem is a part of a more complex control system for the push furnaces in the VSŽ a.s. (the biggest Slovak metallurgy company). In the push furnaces the slabs must be heated on the right temperature before rolling them on the wide-strip rolling mill. By optimal ordering of slabs in push furnaces better heating process as well as significant energy savings can be achieved.


In our paper basic principles of CLP and one of its underlying paradigms - constraint solving  are briefly described and summarised in first two sections. The technological process and the problem in question are described in Section 3 and our solution based on the CLP approach is precisely analysed in Section 4. Finally, the evaluation of our results and some future steps are sketched in Section 5.
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1. Constraint Logic Programming


CLP is a programming paradigm which extends logic programming (LP) in two different ways (see Fig. 1 to understand the origin of  CLP from two parent paradigms - LP and constraint solving ). 


Firstly, there were attempts to incorporate semantic objects inside LP, which would enable us to use more effective algorithms to manipulate with them. These attempts resulted in the so called CLP(X) scheme (incremental linear solving branch in Fig. 1), which was theoretically formulated in (Jaffar and Lassez, 1987) and consequently implemented on the real arithmetic domain in the CLP(R) system (Jaffar et al., 1992).


Secondly, there were attempts to overcome the well known performance problems of the generate-and-test strategy of the LP. The first representative of this approach was the finite domain part of the CHIP system (Dincbas et al., 1988). The key aspect here is a tight integration between a deterministic process, constraint evaluation, and a nondeterministic process, search (domain technology branch in Fig. 1).


Two different approaches resulted in two different technologies used inside existing CLP systems (depicted as two different branches stemmed from the node CLP in Fig. 1) . In both cases, not only expressiveness of the resulted CLP language but also the efficiency is highly improved due to the underlying constraint solving techniques (see Section 2).


CHIP was a first and most innovative prototype implementing both abovementioned CLP technologies. It was initially developed in an industrial laboratory, the ECRC (European Computer-Industry Research Centre) based in Munich (Germany). This event triggered much of what has followed in this area. Since the beginning of nineties a couple of commercial CLP tools have been released. Besides CHIP V4 there are currently DECISIONPOWER, Prolog III, SNI Prolog, ILOG or BNR Prolog each of them being already successfully used for serious industrial applications. There are many more CLP systems (CLP(R), ECLiPSe,  CAL, clp(FD) to name a few) used more less for research purposes (some of them going to be commercialised).


CLP potential lies in its power to tackle difficult combinatorial problems, such as job scheduling in factories, resource allocation, placement problems, production planning and many more. The applicability of the CLP approach has already been proven being used by large corporations, including manufacturers as Dassault Aviation (scheduling and planning) or Renault (planning and car sequencing). 




Fig. 1 Two parent paradigms of CLP and two technologies in CLP
2. Constraint Solving


This section presents the basics of the CS as well as the two solving technologies which are provided by the CLP systems. There are two basic principles underlying CS as presented in constraint languages (Cras, 1993):

1. Declarative Problem Statement: Variables and Constraints
    The first step in expressing a problem consists in identifying a set of constrained variables.  

    These are unknowns, for which we want to find acceptable values. Assume the following toy

     problem.

     Example

I can see H heads and L legs. How many horses are there, and how many men ?

     In our toy problem there are four constraint variables:

H - number of heads 

L - number of legs 

K - number of horses, and

M - number of men 


The second step is to define constraints on these variables. A constraint is a relation of any 

     kind that must hold once the variable has received a value, in order that a solution to the   

     problem is acceptable. In our toy problem we have the following constraints:

H = M + K

L = 2*M + 4*K

2. Incremental Deduction: Active Constraints, Solvers and Consistency Algorithms
    The second principle can be expressed in another way that information supplied by the  

    constraints helps us detect inconsistencies as soon as possible - thus  preventing unnecessary 

    search. The mechanism by which this is achieved is the active constraint which is not only seen 

    as a part of the problem definition, but it also works as a procedural component that ensures the

    relation it represents remains satisfied.


The way active constraints work differs from tool to tool, but in all cases the idea is to   

    associate a constraint or a group of constraints with some incremental solver, a piece of

    software whose function it is to deduce information about the variables in the constraint(s) with

    which it is associated.


The algorithm used by a constraint solver is called consistency algorithm. Such kind of

    algorithms are incremental in the sense that they can be rerun at low cost each time

    "something" changes, in order to deduce the additional information resulting from the change.

    There are two main approaches: incremental linear solving and domain technology.

2.1 Domain Technology


The domain of a variable is the set of possible values it can take. This is at the same time a communication channel for different constraints which share the same variable. This is the basic idea behind domain technology. 


A constraint is (re)activated each time a significant change occurs in the domain in one of its variables, and its execution may lead to changes in the domains of some other variables. This may then lead to the (re)activation of other constraints, resulting in an effect known as constraint propagation. 


A significant subset of this approach is the finite domain technology. In this domain approach, reasoning is in general decentralised in that there is one solver per non elementary constraint.

2.2 Incremental Linear Solving


In this case a solver is attached not to a single constraint but to a group of linear constraints which are typically maintained during computation in a kind of solved form. 


The Simplex-like algorithm is used each time a new linear equation (inequality) is added to the system to prove the consistency of the system as a whole. 


The main advantage of this approach compared to the domain technology, when both are applicable, is that Simplex-like algorithm detects global inconsistencies within a linear system almost immediately, whereas domain-based solvers are in most cases incomplete and may detect the global inconsistencies only when search starts (constraint propagation phase is not powerful enough).

3. Technological process


In this section the technology related to the problem we have been solving using CLP is described as well as the task itself. 


VSŽ a.s. is the largest metallurgy company in the Slovak republic. The change in production technology of its main daughter company Oceľ s.r.o. to continuous slab casting at ZPO 1 and 2, and the gradual decommission of the slabbing operation, and furthermore, the reduction of costs on heating in push furnaces (NP) by utilisation of higher volumes of hot charge, but especially by the change in production philosophy at the hot wide-strip rolling mill (TSP 1700) under conditions of market economy, i.e. to maximally satisfy the requirements of customers represented by means of orders, delivery times, quality and volumes, in these can be found the main motives for the model preparation for automation and co-ordination of the operative plans at ZPO, NP and TSP (Malindžák, 1993).

3.1 Description of Material Flow


A scheme of the material flow is depicted in Fig. 2. (Malindžák, 1993). In the two  continuous casting machines (ZPO 1, ZPO 2) slabs of required dimensions are castled. Castled slabs advance either to the slabs finishing plant and cold storage or in direct sequence for heating into one of four existing push furnaces (NP 1 to NP 4). After heating the slabs are pushed out from the push furnaces and continue rolling on the wide-strip rolling mill (TSP 1700). A field storage serves to make up the balance of differences in production and regular maintenance repairs of TSP 1700 or at longer down-time of ZPO 1 or ZPO 2.


        Fig. 2 Scheme of  material flow at the section ZPO - NP - TSP 

3.2 Goals of Operative Planning


The change in production technology at company Oce¾ with respect to the transition to continuous casting of slabs at ZPO 1 and ZPO 2, with the perspective of slabbing putting out of service and maximum effort to adapt to market and customers has raised the following goals for solution (Malindžák, 1993).

a) Maximally satisfy term requirements of customers, represented by orders and keeping the term of delivery and ordered amount for one week..

b) Co-ordinate the production plans of TSP, NP, ZPO so, that the highest possible percentage of slabs in direct sequence were reached, and by this to solve the difference between the capacity of finishing plant for slabs and the production of ZPO 1 and ZPO 2.

c) By the organisation of material flow and by operative planning of NP to reach energy savings for heating of the slabs in NP. 


In the following we will focus only on the part represented by push furnaces which is the goal of our CLP based system. More details about co-ordination of plans on the three above-mentioned tightly coupled parts of technology at Oce¾ s.r.o. can be found in (Malindžák, 1993).

3.3 Task Description


Our task is to schedule slabs from various sources into push furnaces for heating before rolling onto the hot wide-strip rolling mill. Order of slabs at the output of the push furnaces, i.e. the actual order for the rolling (so called production schedule) is fixed, based on the rules of technology, experiences of planners-logists, actual orders and state of stores.


The main goals of the control system for the push furnaces for the appropriate organisation of slabs pushed into the furnaces and optimal heating inside furnaces are:

· to improve the quality of slab heating,

· to minimise the energy consumption for heating slabs, and

· to reduce the metal overburning.


The input for our task is the abovementioned production schedule which specifies the required order of slabs with particular size and quality at the output of the push furnaces (i.e. their order for the hot wide-strip rolling mill).


The aim of our work is to use the CLP approach to achieve the same results and compare both approaches with respect to their performance as well as flexibility. And, in addition, try to find out whether the proposed heuristic is in fact optimal enough or whether some better

solution can be proposed.

3.4 Existing Control System


The existing automation control system for this technological process is composed from two main parts.

1) Subsystem for the control of pushing slabs into furnaces (PS)

    The main goal of this subsystem, which depends on the given production schedule and the 

    actual situation inside the push furnaces, is to schedule slabs from different sources into the 

    working furnaces.

2) Subsystem for the control of the heating process inside furnaces (HP).

    The main goal of this subsystem is to compute the course of the optimal slab heating, taking 

    into account the actual state inside the push  furnace  and  its  future  states  following  the  

    schedule proposed in PS subsystem.


The heart of the PS subsystem is its information part implemented in FORTRAN 77. In order to improve the original naive approach which scheduled slabs in cycle, a special heuristic for this process was found as a result of a detailed study of the technology. The main idea here is to group the slabs with similar temperature at the input into sequences the length of which are approximately equal to the length of zones inside furnaces. Each furnace has six heating zones which are to some extent independent and easy to control with respect to the actual temperature and energy consumption.

The task has been complicated by the following circumstances.

1) There are four different sources of slabs to be pushed into the push furnaces with various output temperatures of slabs, i.e.

· direct sequence short after slabs are castled at ZPO 1 or ZPO 2,

· from the warm stores of ZPO 1 and ZPO 2,

· from the cold store after finishing, or from the field store, and

· from slabbing.

    For the purposes of optimisation in our program we currently distinguish two kind of sources:

    warm (first two on the list above) and cold (the last two in this list).

2) Special situations may occur, such as:

· the number of working push furnaces changes (e.g. maintenance repair of a NP);

· expected sequence  of slabs from a warm  source comes later (or earlier) than planned;

· other changes in the current production schedule.


The current implementation of the scheduling algorithm solves the special situations (it recognises 10 of them which are most likely to happen) in the form of specialised subprograms which can be started as a result of an interaction with the responsible dispatcher.

4. Solution Using CLP


In this section our solution to the problem specified in Section 3.3 using CLP approach will be precisely specified starting with data structure we used to represent slabs, following by the input data we use to calculate the schedule of slabs for the push furnaces for a prespecified production schedule, and finally the main part of the CLP program itself is presented and explained. 
4.1 Data Structures


To store information about slabs we use for each slab a structure of the following type:

slab(Type, FurnaceNr, TimeIN, TimeOUT)

where the arguments are:

· Type is the type of the slab. Each type of slab has a unique number which implies the size, quality and source of the slab (it is a known integer);

· FurnaceNr specifies the number of the push furnace in which the slab will be heated (this is a finite domain variable with the initial domain as interval <1, Nr_of_furnaces>);

· TimeIN  represents order in which the slab will be pushed into the push furnace (finite domain variable, the initialisation of its domain is explained in the next subsection);

· TimeOUT  represents  the order in which the slab will be pushed out from the push furnace (known integer, given by the production schedule).


In addition there is another structure which represents the information needed to specify a slab of given type, i.e.

slab_type(Type, Source, Width, Quality)

where:

· Type is the type of the slab as described above in structure slab/4;

· Source is the place where the slab comes from. At this stage we recognise only two types of sources - warm (value is 1) and cold (value is 0);

· Width is the only dimension we need for the purposes of scheduling (it is an integer specifying the width of the slab in centimetres);

· Quality is an integer which specifies the steel type from which is this type of slabs made.

4.2 Input Data


In this subsection the necessary input data to generate the schedule of putting slabs into push furnaces are is listed together with examples how it looks like in the program.


As the input, the

1. initial content of the working push furnaces (represented as list of structures of type slab/4 for all slabs already inside push furnaces; they input time TimeIN is 0, e.g. slabs_already_inside([slab(15,0,1), slab(15,1,0,2), slab(34,2,0,3), ...]),
2. the required production schedule (represented as a list of type numbers of slabs specifying their wanted order  for rolling, e.g. prod_schedule([34, 34, 38, ...]),
3. the number of currently operational push furnaces (represented as a fact of the following type - e.g. number_of_furnaces(4) ), and 

4. length of the push furnaces (represented as a fact of the following type - e.g. length(3400) - the number specifies the actual length is in centimetres) 

must be given.


In addition, there must be specified the type information (facts of type slab_type/4 - see previous subsection 4.1) for each slab type used in the program. This specifications are stored in a separate file and it is possible to create it edit it direct from the graphical user interface of the program. Similarly, the slabs already inside push furnaces as well as the production schedule are stored in separate files and can be changed or created by the user from the program in a very user friendly and simple way.

4.3 CLP Program


To give a CLP model of the problem, we have to specify (with respect to the description of the constraint solving paradigm given in Section 2):

1. Variables. In our case the number of variables is given by the number of slabs presented in the actual  instance of the problem, i.e. the number of slabs in given production schedule. For each of  them we have two finite domain (FD) variables, namely FurnaceNr and TimeIN  (see Subsection 4.1) and the number of slabs already inside push furnaces (for each of them the output time is already specified).

2. Constraints of various nature are stated during the program run interleaving with the building of structures to represent them. Details will be specified in the following.


The core problem is to represent the technological constraints. In our current model the constraints are stated in four steps. These can be seen in the sketch of our CLP program.

main(S) :-

   number_of_furnaces(F),




   length(L),




   slabs_already_inside(S1),

   prod_schedule(G),

   set_structures(G, F, L, S2), 

% 1. step

   set_constraints(S2), 


% 2. step

   append(S1, S2, S),

   check_occupation(S2, S),

% 3. step




   check_cost(S, Cost),


% 4. step

   our_labelling(S2, S),

   cost_function(S, Cost),

   print_results(S).


Constraints stated in particular steps, signed in the program above as commentaries, are listed in the following.

1. step 


Predicate set_structures/4 builds a list of structures of type slab/4 length of which is the same as the length of the given production schedule. Types of slabs (Type) as well as output times (TimeOUT) which are represented in this list correspond to the types and order of slabs given in the production schedule. Domains of the variables FurnaceNr and TimeIN are initialised as follows (::/2 is predefined operator in ECLiPSe for stating domain, in the following as an interval):



FurnaceNr :: 1 .. F



TimeIN :: 1 .. (TimeOUT - Min)
2. step


After constructing the list of structures for slabs which will be pushed into furnaces as a result of the given production schedule (the list S2) various constraints are stated on the domain variables presented in the corresponding structures of type slab/4.


The basic ones which are stated for each slab in the list S2 are the following two:



TimeOUT - TimeIN ( Min,



TimeOUT - TimeIN ( Max. 

The first one specifies the minimal heating time of the slab (necessary to get the right temperature), and the second one the maximal heating time of the slab (to avoid overheating of the slab).


Another constraint which is built-in (specialised FD library) of the CLP system ECLiPSe we used is the symbolic constraint alldifferent/2 which we used to state the fact, that at all slabs from the given production schedule must be pushed in some of the furnaces at mutually different times, i.e.



alldifferent(IN_Times_S2)

where IN_Times_S2 is a list of all variables TimeIN from the list S2.

3. step


There are two special symbolic constraints built up making use of the ECLiPSe FD library. The first one, listed in the program as:



check_occupation(S2, S)
is activated whenever a slab is chosen to be pushed in some of the furnaces. 


This constraint checks the occupation (sum of widths of slabs currently inside this furnace) of the particular push furnace, i.e. the situation after the slab is pushed into this furnace (the slabs are pushed into the furnace width-oriented, therefore widths are used to calculate the actual occupation). One, in some cases two (but no more) slabs may be pushed out from this furnace as a result of this operation. The new occupation of the push furnace may not be longer or shorter than prespecified values. 

4. step


Last important symbolic constraint we built similar as in step 3. is the constraint



check_cost(S, Cost).

The purpose of this constraint is to calculate and check the partial cost evaluated from the partial solution. If it is greater than the minimal cost found already for a complete solution, the generation of the current schedule will be stopped and search will continue at next choice point  generated by the our_labelling/2 predicate. This is a part of the optimisation included in our program (details see in the following paragraph).  

3. Optimisation
    There is another and crucial aspect of the problem, namely optimisation. The current version of   

    our program we calculate the cost function as follows. For each pair of neighbouring slabs (i.e.  

    which will be pushed into the same push furnace one next to another (with subscript i and  j 

    respectively,  j= i+1) in the proposed schedule the cost is calculated with respect to the 

    following simple algorithm:


if   Sourcei  = Sourcej


then   Costij  = TimeINi  - TimeINj  - 1


else if   Sourcei  > Sourcej



then   Costij  = 4 * (TimeINi  - TimeINj   )



else   Costij  = 2 * (Max - TimeINj  - TimeINi  ).

The total cost is given then as a sum of all such neighbourhood pairs (for all push furnaces and the whole production schedule). 


Each proposed schedule is evaluated with respect to this cost function and the one with minimal value is proposed as final schedule.

4. Labelling

    Defining variables and stating constraints in a CLP program is usually not enough to get 

    solution. From the efficiency reasons the constraint propagation techniques built in a CLP  

    system make a trade-off between efficiency and level of achieved consistency. As a result, the  

    solvers are incomplete (see Subsection 2.1) and the search in the reduced search space must be 

    done instantiating step by step domain variables with values from their domains (this process is 

    called labelling). This is interleaved with constraint propagation automatically triggered after   

    each instatiation.


In our program special labelling predicate our_labelling/2 is used. It takes step by step a 

    output order (slab at the end of some push furnace) and looks for some slab, which could be 

    pushed at this time into the same furnace. Simultaneously, occupation and cost are checked 

    (see 3. and  4. step in the description of the constraints above). If necessary, two or three slabs 

    are pushed into the same furnace one after another in order to satisfy the check_occupation/2 

     constraint. If no slab can be found to satisfy all the constraints, the program stops search and 

     (if it exist) prints the solution with minimal cost (otherwise there is no solution for this input   

     data).  The program offers the possibility to visualise the best solution and simulate the whole 

     schedule step by step.

5. Conclusion


The proposed CLP model works well for homogeneous (arbitrary number of) furnaces of arbitrary length. The program is able to generate all possible orderings of slabs on input to get the requested output ordering (production schedule) and chose the schedule with minimal value of cost function defined at the end of previous Subsection 4.3.


But the actual program has a decisive disadvantage that it is not efficient enough for realistic data (i.e. production schedule with 60 slabs). There are two main reasons of this behaviour.


Firstly, the constraints by this representation can not propagate the new information which is instantiating domain variables FurnaceNr and TimeIN of some slab (i.e. choosing a slab to be pushed into some furnace) during the our_labelling/2 procedure. As a result, domains are not significantly reduced, constraint propagation is not powerful enough and therefore dominates search.


Secondly, due to the fact that production schedule usually includes consecutive groups of slabs of the same type, the number of solutions is very high. Many of them are generated by the program (except of solutions cut down by the optimisation constraint check_cost/2).


Analysing these sources of inefficiency we decided to try another representation which would not distinguish slabs of the same type from the given production schedule, or generate new constraints which will help the constraint propagation respectively.
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