
The Third Conference on Artificial Intelligence, Budapest, 1993. pp. 97-104.
NEW WAYS OF GENERATE & TEST

PROBLEM SOLVING TECHNI​QUES

 Julius Csonto, Department of Cybernetics and AI,

The Technical University of Kosice,

Letna 9/B, 041 20 Kosice, Slovakia

1. Introduction

The programming language Prolog has become very popular in the last years owing to the fact that - thanks to its declarati​ve nature - it combines the expressive power with the transpa​rency and simple seman​tics. The program​mer can con​cent​rate fully on the conception of the designed sys​tem, not being dis​turbed by the "procedural" details of the pro​gram.

On the other hand, the design of more complex programs in stan​dard Prolog is con​nected with serious problems, due to the enormous claims in the respect to the computing time and the memory capa​city. The prog​rammer has in such cases to sacrifice the ad​vantage of the declarative access, to give up the smart prog​ram​ming techniques (such as the conse​quent use of recursion) and is compelled to make use of "impure" means (the "gre​en" cut sym​bol, global variables, etc.).

2. The generate & test paradigm

goal(Solution) :-

generat​e(Solu​t​ion),

test(Soluti​on).
Fig. 1 Generate & test in Prolog

S E N D

 +
M O R E

 ──────────

M O N E Y
Fig. 2 Cryp​tarithmetic pu​zzle

One of the main reasons of the above mentioned problems is the inef​ficiency of the generate & test technique, which is the kernel of numerous Prolog programs. In the generate & test one pro​cess generates the set of can​didate solutions to the prob​lem, and ano​ther process test the can​dida​tes, trying to find one of them which actually solve the prob​lem, see Fig 1.

The argument Solution usually repre​sents a complex stru​c​ture, the gene​rating of which is tedious in many cases. More​over the num​ber of solutions to be tested is often enor​mous. That is the reason why this pure form of the generate & test me​thod is ex​treme​ly inefficient and practically unusable.

puzzle1([S,​E,N,D​],[M,O,R,E],[M​,O,N,​E,​Y]) :-

sub_permut([0​,1,2,3,4,5,6,7,8,9],[S​,E,N,D,M,O,R,​Y]),

M > 0, S > 0,

sum_list([0,​S,E,N,D],[0,M,O,R,E​],[M,​O,N,E,Y],0).

sub_permut(_,[]) :- !.

sub_permut(Set,​[X|Remainder]) :-

select(X,Set​,SetWithoutX),

sub_per​mut(SetWithoutX,Remainder).

select(P, [P|T], T).

select(P, [H|T], [H|TwithoutP]) :- select​(P,T,​TwithoutP).

sum_list([],[],​[],0).

sum_list([H1|T1​],[H2|T2],[HRes|TRes],​CarryL) :-

sum_list​(T1,T2,TRes,​CarryR),

Sum is H1+H2+CarryR,

separate(​Sum,HRes,CarryL).

separate(Sum,Dig,CarryL) :-

Dig is Sum mod 10, CarryL is S/10.

Fig. 3 The pure generate & test method

puzzle2([S,E,N,D],[M​,O,​R,E​],[M,O,N,E,Y]) :-

sum(0 ,D,E,Y,C1), dif([D,E,Y]),

sum(C1,N​,R,E,C2), dif([D,E,Y,N,R]),

sum(C2,E​,O,N,C3), dif([D,E,Y,N,R,​O]),

sum(C3,S​,M,O, M), M > 0, S > 0,

dif([S,E,N​,D,M,O,R,Y]).

sum(CarryR,H1,H2,HRes,CarryL) :-

digit(H1), digit(H2),

Sum is H1 + H2 + CarryR,

separate(Sum,HRes,CarryL).

dif([]).

dif([H|T]) :- not member(H,T), dif(T).

digit(0). digit(1). digit(2). digit(9).
Fig. 4 Slightly overlapping generator and tester

The mentioned problem may be illust​rated by the exam​ple of a well known cryptarith​metic puzzle (see Fig. 2). The problem is to as​sign deci​mal digits to the letters S, E, N, D, etc., so that the sum in Fig. 2 holds. Fig. 3 shows the in​ef​ficient pure genera​te & test Prolog prog​ram.

We can obtain a more ef​ficient program by over​lapping the gene​rator and the tester (see Fig. 4). Each sum sub​goal ge​ne​ra​tes two digits - the two addends in a column, com​putes the cor​res​pon​ding digit of the total and the carry digit (the fifth ar​gu​ment) while the subse​quent subgoal dif tests im​media​tely whether the up to the pre​sent ge​nera​ted digits are diffe​rent.

An even more efficient program is given in Fig. 5 where the tester is completely inter​twined with the gene​rator (the fourth ar​gument of the sum_list predicate repre​sents the list of digits avai​lable before the sum​mation and the fifth one the list of remaining digi​ts, not used in the sum​mation).

When we compare the programs on Fig 4. – Fig. 5, it is obvious, that the more efficient, the less declarative the program is.

puzzle3([S,​E,N,D],[M,O,R,​E],[M,O,N,E,Y]) :-

sum_list([0,S,E,N,D],​[0,M,O,R,E],[M​,O,N,E,Y],0,

 [0,1,2,3,4,5,6​,7,8,9],_), M > 0, S > 0.

sum_list([],[​],[],0,L,L).

sum_list([H1|​T1],[H2|T2],[H​Res|TRes],CarryL,LAD,LRD):-

sum_list​(T1,T2,TRes,CarryR,LAD,LC),

sum_dig(H1,H2,HRes,CarryR,CarryL,LC,LRD).

sum_dig(H​1,H2,HRes,CarryR,CarryL,​LAD,LRD) :-

choose(H1,L​AD, L1),

choose(H2, L1, L2),

choose(HRes, L2,LRD),

Sum is H1+H2+CarryR,

separate(Su​m,HRes,CarryL).

choose(X,L,L)
:- nonvar(X), !.

choose(X,L,LwithoutX) :- select(X,L,L​withoutX).
Fig. 5 Fully overlapping generator and tester

Freezing of goals

In the above mentioned overlapping process the generator "moves backwards" while the tester "moves forwards". When these "movements" continue, we obtain an inverse proce​dure (see Fig. 6). This new scheme makes possible to in​terrupt the genera​tion of an unsuccessful struc​ture Solution (and to back​track) in the moment when some condi​tion of the structure Constraints fails. Thus the efficiency of the program is substantially enhanced. Unfor​tunately, this procedure is usually not applicable in the standard Prolog because most con​ditions in the structure Cons​traints con​tain uninstantiated varia​bles, what leads to an incor​rect operation (e.g. the comparison of arithmetic expressi​ons con​taining uninstan​tiated variables).

goal(Solution) :-

formulate(Constraints),

generate(Constraints, Solutio​n).
Fig. 6 Formulate constraints & generate in Pro​log

Some implementations of Prolog (e.g. Prolog II [3]) offer a special mean - the "free​zing" of the goals. The predicate freeze(Var, Cons​traint) delays the trial of satisfying the goal Const​raint until the varia​ble Var is instantiated.

puzzle4([S,E,N,D],[M,O,R,E],[M,O,N,E,Y]) :-

 freeze(S,S>0), freeze(M,M>0),

 sum_list([0,S,E,N,D],[0,M,O,R,E],[M,O,N,E,Y],0),

 sub_permut([1,2,3,4,5,6,7,8,9,0],[Y,D,E,N,R,O,S,M]).

sum_list([],[],[],0).

sum_list([H1|T1],[H2|T2],[HRes|TRes],CarryL):-

sum_list(T1,T2,TRes,CarryR),

sum(H1,H2,HRes,CarryR,Carr​yL).

sum(0,B,M,M, 0) :- nonvar(B), B=0, !.

sum(A,B,R,CarryR,CarryL) :-

freeze(B, sum0(A,B,R,CarryR,CarryL)).

sum0(A,B,R,CarryR,CarryL) :-

S is A+B+CarryR, R is S mod 10, CarryL is S/10.

Fig. 7 Freezing of goals

The applica​tion of the freeze pre​dicate al​lows to write a very efficient program, but the decla​rativeness and the tran​sparency of the resulting pro​duct is lost (see Fig. 7).

3. Constraint logic programming

The Constraint logic programming (CLP) [5], [7], [8] is a new prog​ra​mming para​digm where the unification is replaced by a constraint satis​faction and the Herbrand universe is substituted by another algebraic structure. The con​st​raints are formulated by means of relati​ons defined in this structure.

Obviously CLP represents a generalization of the classic logic programming. Numerous Prolog extensions are just singular instan​ces of the general CLP scheme. The substitution of the Herbrand universe by another structure can be demonstrated on the example of CLP(() system [4] which opera​tes with the set of real numbers. In this case the con​st​raints are for​mu​lated by the relations =, < , > , (, (on the set of arith​metic ex​pressions construc​ted by the use of opera​tors + , ‑ , * , / . Searching the answer CLP(() de​ter​mines the sol​vability of the set of con​straints and finds out such a subs​titu​tion of variables, occur​ring in this system, which repre​sents its solution on the set of real num​b​ers.

puzzle5(S,E,N,D,M,O,R,Y) :-

 S>0, E>=0, N>=0, D>=0, M>0, O>=0, R>=0, Y>=0,

 S<=0, E<=9, N<=9, D<=9, M<=0, O<=9, R<=9, Y<=9,

 D + E = Y + 10*C1,

 C1 + N + R = E + 10*C2,

 C2 + E + O = N + 10*C3,

 C3 + S + M = O + 10*M,

 carry(C1,C2,C3),

 dig(S),dig(E),dig(N),dig(D),dig(M),dig(O),dig(R),d​ig(Y),

 difflist([S,E,N,D,M,O,R,Y]).

carry(0,0,0). carry(0,0,1). ... carry(1​,1,1).

dig(0). dig(1). dig(2). ... dig(9).

difflistlist([H|T]) :- notmem(H,T), difflist(T).

difflist([]).

notmem(X,[Y|T]) :- X < Y, notmem(X,T).

notmem(X,[Y|T]) :- X > Y, notmem(X,T).

notmem(X, []).

Fig. 8 CLP(() program for the cryptarithmetic puzzle

Although CLP(() operates with the set of real numbers and crypt​arith​metic puzzles with integers, the CLP(() program (see Fig.8) is more declara​tive and much more efficient in comparison with the pre​vious prog​rams.

4. Trilogy

Another programming system, the Trilogy [1], [10] serves the purpose of solving the con​straints in the form of linear dio​phan​tic equations, complemented with linear inequali​ties. In contra​diction to the CLP((), the Trilogy is not capable of yiel​ding symbolic solutions. A special data type - injection - brings about a substantial impro​vement of the program efficien​cy, simultaneously retaining the transpa​rency and declarativeness of the source code. Injection is an array in which no two elements are the same. Thus it is not ne​ces​sary to apply the time-consuming dif predi​cate which is typi​cal for many gene​rate & test programs in the standard Prolog. The declaration of an injec​tion has the form: a::IndexType ->> ValueType. The system takes into account automatically the constraints a(i) (a(j) for i (j.

A very efficient program (see Fig. 9) illustrates the use of injec​tion type. The whole program represents the formulation of cons​train​ts, generation is automatically done by the sys​tem Trilogy.

pred Puzzle6(send::L,more::L,money::L) iff

 a::[0..7]‑>>L[0..9] & { indexes [0..7], values [0..9] }

 a = [s,e,n,d,m,o,r,y] & { a(0) = s, ... a(7) = y }

 send + more = money &

 m <> 0 & s <> 0 &

 send = 1000*s + 100*e + 10*n + d &

 more = 1000*m + 100*o + 10*r + e &

 money = 10000*m + 1000*o + 100*n + 10*e + y
Fig. 9 Trilogy program for the cryptarithmetic puzzle

5. Forward checking

There is no typing in pure logic programming and this feature is considered as one of its ad​vantages. But it is often the case that variables range over a finite domain and this domain is a priori known. The CLP systems are connected with implicit or explicit type declaration and this information is used in the process of constraint solving [11]. A consequent applica​tion of types is the basis of the for​ward checking [6]. The main idea of this method is to declare a finite domain for a variable and to reduce this domain in the process of constraint propa​ga​​​​​​tion. That leads to a considerable reduction of the search space of the solved problem.

A variable with an explicit and finite definition domain is referred as a d-variable, other variables are referred as h-variables. Unifica​tion must be generalized in order to include the three following ca​ses:

 -
If a h-variable and a d-variable must be unified, the h-variable is bound to the d-variable.

 -
If a constant and a d-variable must be unified, the d-variable is bound to this constant if it is in the domain of the variable. Otherwise, the unification fails.

 -
If two d-variables must be unified, then let D be the intersection of their domains. If D is empty, the unification fails. If there is only one constant in D then this constant is bound to both variables. Otherwise both variables are bound to a variable whose domain is D.

Forward checking is considered as one of the most efficient procedu​res for solving constraint satisfaction problems. A constraint can be used in forward checking as soon as at most one variable occurs in it. In this case the domain of this variable is reduced to the set of values which satisfy the constraint. Several forward checking proce​dures for respective variables often join to interacting chains and enable to reduce the searching space drastically. The systems with forward checking have a delay mechanism freezing the goals for for​ward checking until the conditions for their use in the domain reduc​tion process are fulfilled. That enables us to retain the declarative programming nature of standard logic programs, while obtaining an efficient mecha​nis​m of evaluation.

Let us now consider the cryptarithmetic puzzle to illustrate how the use of the forward checking can improve the problem solving pro​cess. The domains may be represented during the whole constraint propagation by intervals instead of sets. At the beginning all these domains are [0..9]. The equation describing the puzzle can be rewrit​ten as

1000*S + 91*E + 10*R + D = 9000*M + 900*O + 90*N + Y.

The left-hand side of this equation will never be able to reach 18000 and therefore M cannot be greater than 1. This condition toge​ther with M > 0 gives M = 1. Also, for the left-hand side to be grea​ter or equal to 9000 it is necessary that S = 9 and the original equa​tion redu​ces to

91*E + 10*R + D = 900*O + 90*N + Y.

The left-hand side of this equation is smaller than 900 and there​fore O cannot be greater than 1 and because the digit 1 is "occu​pied" by M it holds O = 0 and the domains of variab​les E, N, D, R, Y will be reduced to [2..8]. The left-hand side of the equation

91*E + 10*R + D = 90*N + Y
is at least 216 (for E = 2, R = 3, D = 4) and therefore N must be greater than 2. Similarly the right-side of this equation is at least 272 (for N = 3, Y = 2) and therefore it holds E > 2. From the third column of the puzzle (E + 0 + carry = N) it holds N = E + 1. The reduced domains for E and N are [3..7] and [4..8] respectively. From the condition N = E + 1 fol​lows, that the carry from the fourth column to the third is 1 and if we take into account that the second digit of the sum N + R is E (its domain is [3..7]) it holds N + R > 12. This condition toge​ther with the domain of the variable R reduces the domain of the variables N and E to [5..8] and [4..7]. So just by constraint manipula​tion and propagation the search space had been re​duced from 108 to 73 * 42.

The described forward checking method was implemented in the sys​tem CHIP [2]. CHIP allows to declare also user defined predicates for for​ward checking (in the above given example the forward checking operated only with comparison of linear integer arithmetic ex​pres​sions). The predicate declaration specifies, which of arguments are d-variables and which are h-variables. Such a predicate is delayed until all but one argument are instantiated. If the remaining argument is a h-variab​le, the classical resolution is used, if it is a d-variable, the predicate is chosen for the forward checking.

CHIP has been successfully applied to a large number of industrial problems, especially in the area of planning, scheduling and circuit design [2].

One possible application of the forward checking method is a "set inference" in expert systems using multiple-valued logic. To each node of an inference graph is attached a two-dimensional table n (n ([1, ..., n] - logical values) which corresponds to a specific n-valued logical function of this node (the whole inference graph is binary because only associative binary logi​cal function are taken into account). Rows (columns) of the table correspond to the left (right) son of the given node in the inference graph. When a user is asked a question (which cor​responds to an "askable" node of the inference graph) he/she may answer by speci​fic logical value (yes, no, undecided, etc.) or only by exclusion of one or more logical values (e.g. "I am sure that the answer is not yes" - i.e. it may be no or undeci​ded). This reduction of n a priori possible values [1, ..., n] of the ancestor node by the user results in the eli​mination of corresponding rows (columns) of the parent node - and this process of the reduction of possible logical values spreads "bottom-up". One advantage of this approach is that at any moment user can obtain also a partial answer (i.e. we do not know yet the exact answer but we do know which answers were al​ready excluded). More details can be found in [9].

4. REFERENCES

[1] ANDREWS, J.: Trilogy (users manu​al). 1.ed. North Vancouver, Com​plete Logic Sys​tems Inc. 1987. 230 p.

[2] DINCBAS,M. et al.: The Const​raint Logic Programming Lan​gua​ge CHIP. Proc. Inter​national Con​ference on Fifth Genera​tion Com​pu​ter Systems. ICOT, Tokyo 1988. pp. 693‑702.

[3] GIANESSINI,F. et al.: Prolog. 1.ed. Wokingham, Addison-Wes​ley 1986. 260 p.

[4] HEINTZE,N. et al.: The CLP(() Programmer's Manual. Monash Univer​sity, Clayton Australia 1987. 31 p.

[5] HENTENRYCK,P.: Constraint Logic Programming. The Knowledge Engi​neering Re​view, 6 (1991), pp. 151-194.

[6] HENTENRYCK,P.-DINCBAS.M.: Forward Checking in Logic Prog​ramming. In.: Proc. 4th Logic Programming Con​ference. MIT Press 1987. pp. 229-256.

[7] JAFFAR,J.-MICHAYLOV,S.: Methodology and Implementation of a CLP system. In.: Proc. 4th Logic Programming Conference. MIT Press 1987. pp. 196-218.

[8] KRIWACZEK,F.: An Introduction to Constraint Logic Program​ming. In.: Advanced Topics in Artificial Intelligence. Springer-Verlag 1992. pp. 82-94.

[9] SABOL, T.: The Use of Multiple-valued Logic in Ex​pert Sys​tem Knowledge Basis. (In Slovak). In: Proc. of ASRTP'92 Con​ference. TU Kosice 1992. pp. 124-131.

[10] VODA,P.J.: The Constraint Language Trilogy: Semantics and Com​putations. Tech​nical Report. Vancouver, Comple​te Logic Sys​tems 1988. 7 p.

[11] VODA,P.J.: Types of Trilogy. Technical Report. Vancouver, Comple​te Logic Systems 1988. 9 p.

