
The Third Conference on Artificial Intelligence, Budapest, 1993. pp. 97-104.
NEW WAYS OF GENERATE & TEST

PROBLEM SOLVING TECHNIQUES

 Julius Csonto, Department of Cybernetics and AI,

The Technical University of Kosice,

Letna 9/B, 041 20 Kosice, Slovakia

1. Introduction

The programming language Prolog has become very popular in the last years owing to the fact that - thanks to its declarative nature - it combines the expressive power with the transparency and simple semantics. The programmer can concentrate fully on the conception of the designed system, not being disturbed by the "procedural" details of the program.

On the other hand, the design of more complex programs in standard Prolog is connected with serious problems, due to the enormous claims in the respect to the computing time and the memory capacity. The programmer has in such cases to sacrifice the advantage of the declarative access, to give up the smart programming techniques (such as the consequent use of recursion) and is compelled to make use of "impure" means (the "green" cut symbol, global variables, etc.).

2. The generate & test paradigm

goal(Solution) :-

generate(Solution),

test(Solution).
Fig. 1 Generate & test in Prolog

S E N D

 +
M O R E

 ──────────

M O N E Y
Fig. 2 Cryptarithmetic puzzle

One of the main reasons of the above mentioned problems is the inefficiency of the generate & test technique, which is the kernel of numerous Prolog programs. In the generate & test one process generates the set of candidate solutions to the problem, and another process test the candidates, trying to find one of them which actually solve the problem, see Fig 1.

The argument Solution usually represents a complex structure, the generating of which is tedious in many cases. Moreover the number of solutions to be tested is often enormous. That is the reason why this pure form of the generate & test method is extremely inefficient and practically unusable.

puzzle1([S,E,N,D],[M,O,R,E],[M,O,N,E,Y]) :-

sub_permut([0,1,2,3,4,5,6,7,8,9],[S,E,N,D,M,O,R,Y]),

M > 0, S > 0,

sum_list([0,S,E,N,D],[0,M,O,R,E],[M,O,N,E,Y],0).

sub_permut(_,[]) :- !.

sub_permut(Set,[X|Remainder]) :-

select(X,Set,SetWithoutX),

sub_permut(SetWithoutX,Remainder).

select(P, [P|T], T).

select(P, [H|T], [H|TwithoutP]) :- select(P,T,TwithoutP).

sum_list([],[],[],0).

sum_list([H1|T1],[H2|T2],[HRes|TRes],CarryL) :-

sum_list(T1,T2,TRes,CarryR),

Sum is H1+H2+CarryR,

separate(Sum,HRes,CarryL).

separate(Sum,Dig,CarryL) :-

Dig is Sum mod 10, CarryL is S/10.

Fig. 3 The pure generate & test method

puzzle2([S,E,N,D],[M,O,R,E],[M,O,N,E,Y]) :-

sum(0 ,D,E,Y,C1), dif([D,E,Y]),

sum(C1,N,R,E,C2), dif([D,E,Y,N,R]),

sum(C2,E,O,N,C3), dif([D,E,Y,N,R,O]),

sum(C3,S,M,O, M), M > 0, S > 0,

dif([S,E,N,D,M,O,R,Y]).

sum(CarryR,H1,H2,HRes,CarryL) :-

digit(H1), digit(H2),

Sum is H1 + H2 + CarryR,

separate(Sum,HRes,CarryL).

dif([]).

dif([H|T]) :- not member(H,T), dif(T).

digit(0). digit(1). digit(2). digit(9).
Fig. 4 Slightly overlapping generator and tester

The mentioned problem may be illustrated by the example of a well known cryptarithmetic puzzle (see Fig. 2). The problem is to assign decimal digits to the letters S, E, N, D, etc., so that the sum in Fig. 2 holds. Fig. 3 shows the inefficient pure generate & test Prolog program.

We can obtain a more efficient program by overlapping the generator and the tester (see Fig. 4). Each sum subgoal generates two digits - the two addends in a column, computes the corresponding digit of the total and the carry digit (the fifth argument) while the subsequent subgoal dif tests immediately whether the up to the present generated digits are different.

An even more efficient program is given in Fig. 5 where the tester is completely intertwined with the generator (the fourth argument of the sum_list predicate represents the list of digits available before the summation and the fifth one the list of remaining digits, not used in the summation).

When we compare the programs on Fig 4. – Fig. 5, it is obvious, that the more efficient, the less declarative the program is.

puzzle3([S,E,N,D],[M,O,R,E],[M,O,N,E,Y]) :-

sum_list([0,S,E,N,D],[0,M,O,R,E],[M,O,N,E,Y],0,

 [0,1,2,3,4,5,6,7,8,9],_), M > 0, S > 0.

sum_list([],[],[],0,L,L).

sum_list([H1|T1],[H2|T2],[HRes|TRes],CarryL,LAD,LRD):-

sum_list(T1,T2,TRes,CarryR,LAD,LC),

sum_dig(H1,H2,HRes,CarryR,CarryL,LC,LRD).

sum_dig(H1,H2,HRes,CarryR,CarryL,LAD,LRD) :-

choose(H1,LAD, L1),

choose(H2, L1, L2),

choose(HRes, L2,LRD),

Sum is H1+H2+CarryR,

separate(Sum,HRes,CarryL).

choose(X,L,L)
:- nonvar(X), !.

choose(X,L,LwithoutX) :- select(X,L,LwithoutX).
Fig. 5 Fully overlapping generator and tester

Freezing of goals

In the above mentioned overlapping process the generator "moves backwards" while the tester "moves forwards". When these "movements" continue, we obtain an inverse procedure (see Fig. 6). This new scheme makes possible to interrupt the generation of an unsuccessful structure Solution (and to backtrack) in the moment when some condition of the structure Constraints fails. Thus the efficiency of the program is substantially enhanced. Unfortunately, this procedure is usually not applicable in the standard Prolog because most conditions in the structure Constraints contain uninstantiated variables, what leads to an incorrect operation (e.g. the comparison of arithmetic expressions containing uninstantiated variables).

goal(Solution) :-

formulate(Constraints),

generate(Constraints, Solution).
Fig. 6 Formulate constraints & generate in Prolog

Some implementations of Prolog (e.g. Prolog II [3]) offer a special mean - the "freezing" of the goals. The predicate freeze(Var, Constraint) delays the trial of satisfying the goal Constraint until the variable Var is instantiated.

puzzle4([S,E,N,D],[M,O,R,E],[M,O,N,E,Y]) :-

 freeze(S,S>0), freeze(M,M>0),

 sum_list([0,S,E,N,D],[0,M,O,R,E],[M,O,N,E,Y],0),

 sub_permut([1,2,3,4,5,6,7,8,9,0],[Y,D,E,N,R,O,S,M]).

sum_list([],[],[],0).

sum_list([H1|T1],[H2|T2],[HRes|TRes],CarryL):-

sum_list(T1,T2,TRes,CarryR),

sum(H1,H2,HRes,CarryR,CarryL).

sum(0,B,M,M, 0) :- nonvar(B), B=0, !.

sum(A,B,R,CarryR,CarryL) :-

freeze(B, sum0(A,B,R,CarryR,CarryL)).

sum0(A,B,R,CarryR,CarryL) :-

S is A+B+CarryR, R is S mod 10, CarryL is S/10.

Fig. 7 Freezing of goals

The application of the freeze predicate allows to write a very efficient program, but the declarativeness and the transparency of the resulting product is lost (see Fig. 7).

3. Constraint logic programming

The Constraint logic programming (CLP) [5], [7], [8] is a new programming paradigm where the unification is replaced by a constraint satisfaction and the Herbrand universe is substituted by another algebraic structure. The constraints are formulated by means of relations defined in this structure.

Obviously CLP represents a generalization of the classic logic programming. Numerous Prolog extensions are just singular instances of the general CLP scheme. The substitution of the Herbrand universe by another structure can be demonstrated on the example of CLP(() system [4] which operates with the set of real numbers. In this case the constraints are formulated by the relations =, < , > , (, (on the set of arithmetic expressions constructed by the use of operators + , ‑ , * , / . Searching the answer CLP(() determines the solvability of the set of constraints and finds out such a substitution of variables, occurring in this system, which represents its solution on the set of real numbers.

puzzle5(S,E,N,D,M,O,R,Y) :-

 S>0, E>=0, N>=0, D>=0, M>0, O>=0, R>=0, Y>=0,

 S<=0, E<=9, N<=9, D<=9, M<=0, O<=9, R<=9, Y<=9,

 D + E = Y + 10*C1,

 C1 + N + R = E + 10*C2,

 C2 + E + O = N + 10*C3,

 C3 + S + M = O + 10*M,

 carry(C1,C2,C3),

 dig(S),dig(E),dig(N),dig(D),dig(M),dig(O),dig(R),dig(Y),

 difflist([S,E,N,D,M,O,R,Y]).

carry(0,0,0). carry(0,0,1). ... carry(1,1,1).

dig(0). dig(1). dig(2). ... dig(9).

difflistlist([H|T]) :- notmem(H,T), difflist(T).

difflist([]).

notmem(X,[Y|T]) :- X < Y, notmem(X,T).

notmem(X,[Y|T]) :- X > Y, notmem(X,T).

notmem(X, []).

Fig. 8 CLP(() program for the cryptarithmetic puzzle

Although CLP(() operates with the set of real numbers and cryptarithmetic puzzles with integers, the CLP(() program (see Fig.8) is more declarative and much more efficient in comparison with the previous programs.

4. Trilogy

Another programming system, the Trilogy [1], [10] serves the purpose of solving the constraints in the form of linear diophantic equations, complemented with linear inequalities. In contradiction to the CLP((), the Trilogy is not capable of yielding symbolic solutions. A special data type - injection - brings about a substantial improvement of the program efficiency, simultaneously retaining the transparency and declarativeness of the source code. Injection is an array in which no two elements are the same. Thus it is not necessary to apply the time-consuming dif predicate which is typical for many generate & test programs in the standard Prolog. The declaration of an injection has the form: a::IndexType ->> ValueType. The system takes into account automatically the constraints a(i) (a(j) for i (j.

A very efficient program (see Fig. 9) illustrates the use of injection type. The whole program represents the formulation of constraints, generation is automatically done by the system Trilogy.

pred Puzzle6(send::L,more::L,money::L) iff

 a::[0..7]‑>>L[0..9] & { indexes [0..7], values [0..9] }

 a = [s,e,n,d,m,o,r,y] & { a(0) = s, ... a(7) = y }

 send + more = money &

 m <> 0 & s <> 0 &

 send = 1000*s + 100*e + 10*n + d &

 more = 1000*m + 100*o + 10*r + e &

 money = 10000*m + 1000*o + 100*n + 10*e + y
Fig. 9 Trilogy program for the cryptarithmetic puzzle

5. Forward checking

There is no typing in pure logic programming and this feature is considered as one of its advantages. But it is often the case that variables range over a finite domain and this domain is a priori known. The CLP systems are connected with implicit or explicit type declaration and this information is used in the process of constraint solving [11]. A consequent application of types is the basis of the forward checking [6]. The main idea of this method is to declare a finite domain for a variable and to reduce this domain in the process of constraint propagation. That leads to a considerable reduction of the search space of the solved problem.

A variable with an explicit and finite definition domain is referred as a d-variable, other variables are referred as h-variables. Unification must be generalized in order to include the three following cases:

 -
If a h-variable and a d-variable must be unified, the h-variable is bound to the d-variable.

 -
If a constant and a d-variable must be unified, the d-variable is bound to this constant if it is in the domain of the variable. Otherwise, the unification fails.

 -
If two d-variables must be unified, then let D be the intersection of their domains. If D is empty, the unification fails. If there is only one constant in D then this constant is bound to both variables. Otherwise both variables are bound to a variable whose domain is D.

Forward checking is considered as one of the most efficient procedures for solving constraint satisfaction problems. A constraint can be used in forward checking as soon as at most one variable occurs in it. In this case the domain of this variable is reduced to the set of values which satisfy the constraint. Several forward checking procedures for respective variables often join to interacting chains and enable to reduce the searching space drastically. The systems with forward checking have a delay mechanism freezing the goals for forward checking until the conditions for their use in the domain reduction process are fulfilled. That enables us to retain the declarative programming nature of standard logic programs, while obtaining an efficient mechanism of evaluation.

Let us now consider the cryptarithmetic puzzle to illustrate how the use of the forward checking can improve the problem solving process. The domains may be represented during the whole constraint propagation by intervals instead of sets. At the beginning all these domains are [0..9]. The equation describing the puzzle can be rewritten as

1000*S + 91*E + 10*R + D = 9000*M + 900*O + 90*N + Y.

The left-hand side of this equation will never be able to reach 18000 and therefore M cannot be greater than 1. This condition together with M > 0 gives M = 1. Also, for the left-hand side to be greater or equal to 9000 it is necessary that S = 9 and the original equation reduces to

91*E + 10*R + D = 900*O + 90*N + Y.

The left-hand side of this equation is smaller than 900 and therefore O cannot be greater than 1 and because the digit 1 is "occupied" by M it holds O = 0 and the domains of variables E, N, D, R, Y will be reduced to [2..8]. The left-hand side of the equation

91*E + 10*R + D = 90*N + Y
is at least 216 (for E = 2, R = 3, D = 4) and therefore N must be greater than 2. Similarly the right-side of this equation is at least 272 (for N = 3, Y = 2) and therefore it holds E > 2. From the third column of the puzzle (E + 0 + carry = N) it holds N = E + 1. The reduced domains for E and N are [3..7] and [4..8] respectively. From the condition N = E + 1 follows, that the carry from the fourth column to the third is 1 and if we take into account that the second digit of the sum N + R is E (its domain is [3..7]) it holds N + R > 12. This condition together with the domain of the variable R reduces the domain of the variables N and E to [5..8] and [4..7]. So just by constraint manipulation and propagation the search space had been reduced from 108 to 73 * 42.

The described forward checking method was implemented in the system CHIP [2]. CHIP allows to declare also user defined predicates for forward checking (in the above given example the forward checking operated only with comparison of linear integer arithmetic expressions). The predicate declaration specifies, which of arguments are d-variables and which are h-variables. Such a predicate is delayed until all but one argument are instantiated. If the remaining argument is a h-variable, the classical resolution is used, if it is a d-variable, the predicate is chosen for the forward checking.

CHIP has been successfully applied to a large number of industrial problems, especially in the area of planning, scheduling and circuit design [2].

One possible application of the forward checking method is a "set inference" in expert systems using multiple-valued logic. To each node of an inference graph is attached a two-dimensional table n (n ([1, ..., n] - logical values) which corresponds to a specific n-valued logical function of this node (the whole inference graph is binary because only associative binary logical function are taken into account). Rows (columns) of the table correspond to the left (right) son of the given node in the inference graph. When a user is asked a question (which corresponds to an "askable" node of the inference graph) he/she may answer by specific logical value (yes, no, undecided, etc.) or only by exclusion of one or more logical values (e.g. "I am sure that the answer is not yes" - i.e. it may be no or undecided). This reduction of n a priori possible values [1, ..., n] of the ancestor node by the user results in the elimination of corresponding rows (columns) of the parent node - and this process of the reduction of possible logical values spreads "bottom-up". One advantage of this approach is that at any moment user can obtain also a partial answer (i.e. we do not know yet the exact answer but we do know which answers were already excluded). More details can be found in [9].

4. REFERENCES

[1] ANDREWS, J.: Trilogy (users manual). 1.ed. North Vancouver, Complete Logic Systems Inc. 1987. 230 p.

[2] DINCBAS,M. et al.: The Constraint Logic Programming Language CHIP. Proc. International Conference on Fifth Generation Computer Systems. ICOT, Tokyo 1988. pp. 693‑702.

[3] GIANESSINI,F. et al.: Prolog. 1.ed. Wokingham, Addison-Wesley 1986. 260 p.

[4] HEINTZE,N. et al.: The CLP(() Programmer's Manual. Monash University, Clayton Australia 1987. 31 p.

[5] HENTENRYCK,P.: Constraint Logic Programming. The Knowledge Engineering Review, 6 (1991), pp. 151-194.

[6] HENTENRYCK,P.-DINCBAS.M.: Forward Checking in Logic Programming. In.: Proc. 4th Logic Programming Conference. MIT Press 1987. pp. 229-256.

[7] JAFFAR,J.-MICHAYLOV,S.: Methodology and Implementation of a CLP system. In.: Proc. 4th Logic Programming Conference. MIT Press 1987. pp. 196-218.

[8] KRIWACZEK,F.: An Introduction to Constraint Logic Programming. In.: Advanced Topics in Artificial Intelligence. Springer-Verlag 1992. pp. 82-94.

[9] SABOL, T.: The Use of Multiple-valued Logic in Expert System Knowledge Basis. (In Slovak). In: Proc. of ASRTP'92 Conference. TU Kosice 1992. pp. 124-131.

[10] VODA,P.J.: The Constraint Language Trilogy: Semantics and Computations. Technical Report. Vancouver, Complete Logic Systems 1988. 7 p.

[11] VODA,P.J.: Types of Trilogy. Technical Report. Vancouver, Complete Logic Systems 1988. 9 p.

